metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

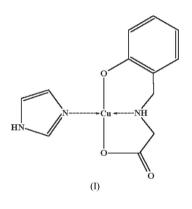
Gan-Qing Zhao,^{a,b} Ji-Min Xie,^a* Min Shao,^c Lu Sun^a and Yuan-Zhi Song^a

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, ^bSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China, and ^cInstrumental Analysis and Research Center, Shanghai University, Shanghai 200444, People's Republic of China

Correspondence e-mail: xiejm391@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.008 Å R factor = 0.044 wR factor = 0.111 Data-to-parameter ratio = 13.9


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1*H*-Imidazole-κN³)[N-(2-oxidobenzyl)ι-leucinato-κ³Ο,Ν,Ο']copper(II)

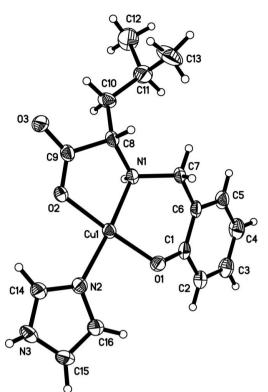
In the title compound, $[Cu(C_{13}H_{17}NO_3)(C_3H_4N_2)]$, the Cu^{II} atom is coordinated by two N [Cu-N = 1.965 (4) and 1.999 (4) Å] and two O [Cu-O = 1.907 (3) and 1.934 (3) Å] atoms in a square-planar geometry. The crystal packing is stabilized by intermolecular N-H···O hydrogen bonds.

Comment

Copper(II) complexes of the tridentate Schiff base pyridoxal, or its analogues, and amino acids provide potential models for a number of important biological systems (Raso *et al.*, 1999). We present here the crystal structure of the title Cu^{II} complex, (I).

In (I) (Fig. 1), the Cu atom is coordinated by the imidazole and tridentate dianionic reduced Schiff base *N*-(2-hydroxybenzyl)-L-leucine in a square-planar geometry (Table 1), which corresponds well to that observed in [Cu(salicylidene-*S*alaninato)pyrazole]pyrazole (Kettmann & Freŝová, 1993). The Cu–amine distance [Cu–N1 = 1.999 (4) Å] is significantly longer than known Cu-imine bond lengths [1.890 (3) Å; Kettmann & Freŝová, 1993]. The successful *in situ* reduction of the imine is evident from the N1–C7 distance of 1.494 (6) Å *versus* 1.27–1.30 Å observed in related Cu^{II} complexes with salicylidene ligands. The C6–C7 [1.485 (7) Å] and N1–C8 [1.470 (6) Å] bond lengths, significantly longer than those in imine complexes, are typical for single bonds and indicate the absence of conjugation.

Intermolecular $N-H\cdots O$ hydrogen bonds (Table 2) form a three-dimensional hydrogen-bonding network, which stabilizes the crystal structure (Fig. 2).


Experimental

The reduced Schiff base ligand was prepared by a modified literature method (Koh *et al.*, 1996). The title compound was synthesized as follows. To the royal blue solution formed from copper(II) acetate

Received 13 December 2006 Accepted 11 January 2007

© 2007 International Union of Crystallography

All rights reserved

Figure 1

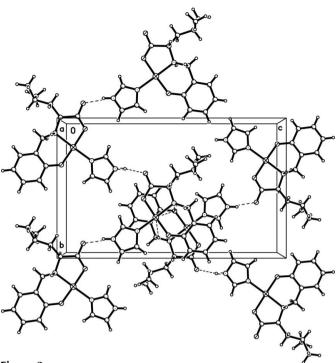
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

monohydrate (200 mg, 1.00 mmol) in ethanol (15 ml) and imidazole (110 mg, 1.00 mmol) in ethanol (10 ml) was added a filtered solution of N-(2-hydroxybenzyl)-L-leucine (238 mg, 1.00 mmol) in water (20 ml) with KOH (1.0 ml, 1 M). The dark-blue solution was stirred for 2 h, then filtered and left for several days. The resulting dark-blue crystals were filtered off, washed with ethanol, and dried under vacuum.

Crystal data

$[Cu(C_{13}H_{17}NO_3)(C_3H_4N_2)]$
$M_r = 366.90$
Orthorhombic, $P2_12_12_1$
a = 7.1094 (9) Å
b = 12.0945 (15) Å
c = 19.731 (3) Å
V = 1696.6 (4) Å ³

Data collection


Bruker SMART CCD area-detector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.696, T_{max} = 0.881$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.111$ S = 1.082970 reflections 214 parameters H atoms treated by a mixture of independent and constrained refinement Z = 4 D_x = 1.436 Mg m⁻³ Mo K α radiation μ = 1.31 mm⁻¹ T = 273 (2) K Block, dark blue 0.30 × 0.10 × 0.10 mm

8853 measured reflections 2970 independent reflections 2507 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.042$ $\theta_{\text{max}} = 25.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0561P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.77 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3} \\ &{\rm Absolute \ structure: \ Flack \ (1983),} \\ 1227 \ {\rm Friedel \ pairs} \\ &{\rm Flack \ parameter: \ 0.01 \ (2)} \end{split}$$

Figure 2

The crystal packing viewed down the a axis. Hydrogen bonds are shown as dashed lines.

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.907 (3)	Cu1-N2	1.965 (4)
Cu1-O2	1.934 (3)	Cu1-N1	1.999 (4)
O1-Cu1-O2	175.65 (15)	O1-Cu1-N1	94.01 (14)
O1-Cu1-O2 O1-Cu1-N2	89.24 (15)	O1-Cu1-N1 O2-Cu1-N1	84.26 (15)
O2-Cu1-N2	92.90 (14)	N2-Cu1-N1	173.22 (19)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{N3-H3A\cdots O3^{i}}$ $N1-H1\cdots O1^{ii}$	0.86 0.78 (5)	1.85 2.17 (6)	2.693 (5) 2.932 (6)	167 164 (5)
Symmetry codes: (i) -	$-r \pm 2 v \pm \frac{1}{2} - \frac{1}{2}$	$r \perp \frac{5}{2}$ (ii) $r \perp \frac{1}{2}$	$-v \pm \frac{1}{2} - z \pm 2$	

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{5}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 2.

Atom H1 was located in a difference map and refined isotropically. Other H atoms were placed in geometrically idealized positions (C– H = 0.93–0.98 and N–H = 0.86 Å) and refined as riding, with $U_{\rm iso}({\rm H}) = 1.2$ or 1.5 times $U_{\rm eq}$ (parent atom).

Data collection: *APEX2* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

References

Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Kettmann, V. & Freŝová, E. (1993). Acta Cryst. C49, 1932-1934.

- Koh, L. L., Ranford, J. D., Robinson, W. T., Svensson, J. O., Tan, A. L. C. & Wu, D. (1996). Inorg. Chem. 35, 6466-6472.
- Raso, A. G., Fiol, J. J., Zafra, A. L., Cabrero, A., Mata, I. & Molins, E. (1999). Polyhedron, 18, 871-878.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2000). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.